Genes Influenced by the Non-Muscle Isoform of Myosin Light Chain Kinase Impact Human Cancer Prognosis
نویسندگان
چکیده
The multifunctional non-muscle isoform of myosin light chain kinase (nmMLCK) is critical to the rapid dynamic coordination of the cytoskeleton involved in cancer cell proliferation and migration. We identified 45 nmMLCK-influenced genes by bioinformatic filtering of genome-wide expression in wild type and nmMLCK knockout (KO) mice exposed to preclinical models of murine acute inflammatory lung injury, pathologies that are well established to include nmMLCK as an essential participant. To determine whether these nmMLCK-influenced genes were relevant to human cancers, the 45 mouse genes were matched to 38 distinct human orthologs (M38 signature) (GeneCards definition) and underwent Kaplan-Meier survival analysis in training and validation cohorts. These studies revealed that in training cohorts, the M38 signature successfully identified cancer patients with poor overall survival in breast cancer (P<0.001), colon cancer (P<0.001), glioma (P<0.001), and lung cancer (P<0.001). In validation cohorts, the M38 signature demonstrated significantly reduced overall survival for high-score patients of breast cancer (P = 0.002), colon cancer (P = 0.035), glioma (P = 0.023), and lung cancer (P = 0.023). The association between M38 risk score and overall survival was confirmed by univariate Cox proportional hazard analysis of overall survival in the both training and validation cohorts. This study, providing a novel prognostic cancer gene signature derived from a murine model of nmMLCK-associated lung inflammation, strongly supports nmMLCK-involved pathways in tumor growth and progression in human cancers and nmMLCK as an attractive candidate molecular target in both inflammatory and neoplastic processes.
منابع مشابه
Expression of a novel high molecular-weight myosin light chain kinase in endothelium.
Myosin light chain phosphorylation results in cellular contraction and is a critical component of agonist-mediated endothelial cell (EC) junctional gap formation and permeability. We have shown that this reaction is catalyzed by a novel high molecular-weight Ca2+/calmodulin-dependent nonmuscle myosin light chain kinase (MLCK) isoform recently cloned in human endothelium (Am. J. Respir. Cell Mol...
متن کاملStructure–Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants
The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung i...
متن کاملThe collagen receptor DDR1 regulates cell spreading and motility by associating with myosin IIA.
The spreading and migration of cells on adhesive substrates is regulated by the counterbalance of contractile and protrusive forces. Non-muscle myosin IIA, an ubiquitously expressed contractile protein and enzyme, is implicated in the regulation of cell spreading and directional migration in response to various stimuli. Here we show that discoidin domain receptor 1 (DDR1), a tyrosine kinase rec...
متن کاملSmooth muscle type isoform of 20 kDa myosin light chain is expressed in monocyte/macrophage cell lineage.
Myosin light chain genes of human hematopoietic cells have not been fully characterized. We previously reported the cloning of the full-length cDNAs of 20 kDa regulatory myosin light chain (MLC-2), named as MLC-2A, from Meg-01, a human megakaryoblastic leukemia cell line (J. Smooth Muscle Res. 37: 25-38, 2001). We now cloned another MLC-2 isoforms from human platelets and U937, a human monocyti...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014